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After briefly presenting basic ideas of the differential space theory, the global 
description of space-times in terms of this theory is given, The space-times of a 
straight cosmic string and that of the closed Friedman world model are our 
standard examples. A space-time with its singular boundary is no longer a differ- 
entiable manifold, but it can be organized into a differential space, and the 
differential structure of space-time can be prolonged to its singular boundary. In 
general, the procedure is not unique. A simple classification of differential struc- 
ture prolongations is also presented. 

I N T R O D U C T I O N  

The growing interest in quantum gravity has encouraged both the search 
for generalizations of  the manifold concept and improvements of  global 
methods related to traditional space-times. Mathematical  theories which are 
simultaneously global and more general than the manifold theory have been 
known to mathematicians for some time (e.g., Aronszajn, 1967; Spallek, 
1969; Sikorski 1967, 1971 ; MacLane,  1970; Marshall, 1975; Mostov, 1979), 
but so far they have not found more extensive applications in physics. In 
the present paper, we continue our previous research (Gruszczak et al., 1988, 
1989; Heller et al., 1989) to model the physical space-time with the help of  
Sikorski's differential space theory. The advantages of  this theory are its 
relative simplicity and close analogy to the standard theory of  differentiable 
manifolds. 

In the present work we focus on two major  issues. The first issue is a 
global description of space-times met in the orthodox theory of general 
relativity. The space-time of  the straight cosmic string and that of  the closed 
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Friedman cosmological model will serve as our standard examples. However, 
our methods apply to other space-times as well. 

The second issue dealt with in the present work is an attempt to apply 
the same methods of investigation to analyze relativistic space-times with 
their singular boundaries (singularities are treated in the classical way, i.e., 
quantum gravity effects are not taken into account). One should notice that 
space-time with its singular boundary is no longer a differentiable manifold, 
but it can be organized into a differential space (usually in many nonequiva- 
lent ways). It turns out that singular boundaries can have unexpected differ- 
ential properties. For instance, topologically quite innocent singularities 
(such as "regular singularities" which essentially originate by cutting off 
some parts of space-time) admit such extensions of the differential structure 
from the space-time into themselves that the differential space in question 
(modeling space-time with its singularities) cannot be embedded in [~" for 
any n < 0o. We effectively construct the background differential spaces of the 
cosmic string and the closed Friedman model with their respective singularit- 
ies - the  so-called quasiregular singularity in the case of the cosmic string, 
and the curvature singularities in the case of the closed Friedman model. 
This part of our research is a continuation of Gruszczak (1990), Gruszczak 
et al., (1991), and Heller (1992). We also give a simple classification of 
possible prolongations of differential structures onto singular boundaries. 

We organize our material in the following way. In Section 1 we give, 
for the reader's convenience, a short account of the theory of differential 
spaces. In Section 2 we effectively construct two space-time models (those 
Of a cosmic string and the closed Friedman worlds) in terms of differential 
spaces. Section 3 contains a methodological discussion concerning the class- 
ical singularity problem, which allows us, in Section 4, to define prolonga- 
tions of differential structures to singularities. In Section 5 we discuss the 
Cauchy singular boundary problem and in Section 6 introduce the Cauchy 
completion of metric differential spaces. Then, in Section 7, we come back 
to our two standard examples (cosmic string and closed Friedman models) 
and construct for them prolongations of differential structures to their singu- 
lar boundaries. A simple classification of differential structure prolongations 
is presented in Section 8, and finally, in Section 9, our main results are 
summarized. Two appendices contain more technical information of the 
theory of differential spaces which is in our constructions: Appendix A deals 
with topology and Appendix B with the (local) differential dimension of 
differential spaces. 

1. BASIC THEORY OF DIFFERENTIAL SPACES 

In all major physical theories space-time is modeled by differentiable 
manifolds on which other structures characteristic for a given theory are 
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superimposed. In this context we shall speak of the background manifold of 
a given space-time. The fact that such background manifclds are usually 
defined in terms of maps and atlases causes some unnecessary complications 
as far as global investigations of space-time are concerned. In what follows 
we propose to replace the differentiable manifold concept by the differential 
space concept (d-space for short) and, correspondingly, to speak of the 
background differential space of a given space-time. The theory of d-spaces 
is global from the very beginning (it does not require the notions of maps 
and atlases), and is by far more general than that of differentiable manifolds. 
One should keep in mind that differentiable manifolds are special cases of d- 
spaces and in standard physical theories, such as general relativity, essentially 
nothing changes if we adopt the conceptual machinery of d-space theory to 
work with space-times, but d-spaces which are not differentiable manifolds 
might be needed in some approaches to quantum gravity (where the mani- 
fold structure of space-time is expected to break down) or when discussing 
the classical singularity problem in relativistic cosmology and astrophysics. 

The idea underlying the theory of d-spaces is the following. The family 
P(X) of real-valued functions on a "reasonable" (e.g., Hausdorff) topologi- 
cal space X forms a linear algebra, and the sets P ,  c P ( X )  of functions that 
vanish at x, where x is any point of  X, form its maximal ideals. Since the 
space of such maximal ideals is isomorphic to X, one can reconstruct the 
topological and some geometric properties of X from the knowledge of 
algebraic properties of  P(X). In particular, the family C~176 of all smooth 
real-valued functions on a differentiable manifold M is a linear algebra, and 
the manifold structure of M can be reconstructed from the structure of 
C~(M) (Geroch, 1972). The d-space theory is one of a few possible ways 
to implement the above ideas into a computational scheme. In the rest of 
this section we shall present its main concepts. 

Let M be any set, and P a family of real functions on M. The weakest 
topology on M in which all functions of P are continuous will be denoted 
by r,e. 

A function f :  A --* ~, where A _ M is a subset of a topological space 
(M, r~,), is said to be a local P-function if for any point p0~d there exists a 
neighborhood B0 ofpo in the topological space (.4, v~ld ) and a function 
g ~ P  such that f] Bo=g111o. The set of all local P-functions on d c A/ wi l l  
be denoted by PA. In general, P l d c P A  ; if, however, P = P M  (for ,4 = M ) ,  
P is said to be closed with respect to localization. 

Let us define scP :={coo(a l  . . . . .  a , ) :  a, . . . . .  a , ~ P ,  ro~C~(I~'), 
n ~ } .  The family P is said to be closed with respect to supell;osition with 
smooth functions r on II~ ~ if P = sc P. 

Definition 1.1. A family P of real functions defined on a set M is said 
to be a differential structure on M if: 
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(a) cg is closed with respect to localization, cg = r 
(b) c~ is closed with respect to superposition with smooth functions on 

IR", i.e., if ~ = (sc Cg)M. 
The pair (M, ~) ,  where cg is a differential structure on M, is called a 

differential space (d-space). 
If (M, d )  is a C~~ where J is an atlas on M, the family 

C~(M) of all C~-functions on M is a differential structure on M. The pair 
(M, C~(M)) is a d-space which is locally diffeomorphic (see below) to I~". 

Let (M, ,~) be a d-space and A any subset of M. (A, c~A) is a d-space; 
it will be called a differential subspaee of (M, cg) [d-subspace of (M, cs 
for short]. For example, if Me_E" and z~ . . . . .  re, are projections onto 
corresponding coordinates, then (M, ~) ,  where 

~ = ( s c ( { z ,  l M , . . . ,  z . I M } ) ) ,  

is a d-subspace of the d-space (~", C~(~")). It can be shown that any subset 
of 1~" can be organized into a d-space, but there are many d-spaces which 
are not subsets of R" for any n. 

Any family of real functions on a set M can be supplemented to form 
a differential structure. Let C~o be a family of real functions on M. The 
weakest (in the sense of inclusion) differential structure c~ on M containing 
g0 is said to be generated by c~0; we write ,~= Gen c~0:= (sc ~0)M. For 
example, the Euclidean differential structure g ,  on the manifold II~" is 
generated by the family of projections onto the axes: g ,  := C~(~") = 
Gen{zi: ~ " ~  IR, i=  1 , . . . ,  n}. If  a d-space is generated .by a finite number 
of functions it is said to befinitely generated (Sasin and Zekanowski, 1987). 

I~" spaces are "modeling spaces" for finitely generated d-spaces. The 
following result will be useful in our considerations: Let (M, ~ )  be a 
Hausdorff d-space with ~ = G e n { J ] , . . .  ,f,}. The mapping F: M--*~", 
F : = ( f i ,  . .: ,f,), is a diffeomorphism onto the image (F(M), (g,)r 
(Sasin and Zekanowski, 1987). In the theory of d-spaces the diffeomorphism 
notion is defined in the following way. Let (M, cg) and (N, 9 )  be d-spaces. 
A mapping f :  M ~ N  is said to be smooth if aofeCg for every a e ~ .  Every 
mapping f :  M ~ N  from a d-space (M, ~ )  to a d-space (N, 9 )  is a diffeo- 
morphism if it is a bijection and both f a n d f  -~ are smooth mappings. 

The totality of d-spaces, as objects, with smooth mappings between 
them (with ordinary composition of mappings), as morphisms, constitute 
the category of d-spaces. The category of differential manifolds is a subcate- 
gory of the category of d-spaces. 

For a differential space (M, ~) ,  we define a tangent vector to M atp~M 
as a linear mapping v: cg ~ ~ such that 

v(fg)  = v(f)g(p) +f(p)v(g), peM, f, gECg 
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The set of all tangent vectors to M atp is called tangent space (denoted 
by TpM) to the d-space (M, cs at p. The space TpM is a linear subspace 
of the linear space ~ of all real functions defined on Z (see, for example, 
Isham, 1989). A vector field on a d-space (M, cg) is a mapping 

V: M~p--+ V(p)~TpMc U TqM 
qeM 

A vector field V on M is said to be smooth if for every f~,~ the real 
function V(. )( f):  M~p-~ V(p)(f)~ O~ is an element of ~. 

Some d-spaces can be regarded as "parts" of a differentiable manifold; 
they are called d-spaces of class Do and are simple to deal with. They will 
play an important role in our further analysis. A d-space (M, cg) is said to 
be of class Do if for every point p~M there exist an open neighborhood U 
ofp and a differentiable manifold N such that Uc  N, dim N= dim Tp M, and 
C~(U) : C~ 

Let us note that the dimensionality of d-spaces is not a part of their 
definition, but it can be additionally defined. The theory of differential 
dimension is well elaborated (Multarzyfiski and Sasin, 1989; Heller and 
Sasin, 1990). In the present work we shall distinguish two differential dimen- 
sion concepts : (1) the local differential dimension at a point p ~ M is simply the 
dimension of the tangent space TpM to (M, cg); (2) the (global) differential 
dimension is the real number n such that (a) n--dim TpM for every p~M, 
and (b) for everypcM and every vector WTpM there is a smooth tangent 
vector field V on (M, cg) such that V(p)=v. Those facts of the theory of 
differential dimension which will be used in the present work are summarized 
in Appendix B. 

For a full theory of differential spaces the reader should consult the 
original monograph by Sikorski (1972) or the review paper by Heller et al. 
(1989). 

2. d-SPACE DESCRIPTION OF SPACE-TIME 

In our previous works (quoted in the Introduction) we have developed 
theoretical aspects of modeling space-times on d-spaces rather than on 
smooth manifolds. In the present section we present an "algorithm" which 
will allow one to effectively apply d-space methods to analyze space-times 
met in general relativity. We do that by presenting two, typical in certain 
aspects, examples. 

Example 2.1. Differential Space of a Cosmic String 

Recent fascination with cosmic strings as products of phase transitions 
in the very early universe (e.g., Kibble, 1976; Vilenkin, 1981a,b; Hiscock, 
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1985; Gott,  1985) revived interest in space-time with the metric 

ds 2 = - d t  2 + dr 2 + r 2 dO 2 + dz 2 (2.1) 

where t, z ~ ( - ~ ,  c~), re(0,  ~ ) ,  0~(0 ,  21r-A), A t ( 0 ,  2Jr). This space-time 
appeared in Staruszkiewicz (1963), where it was interpreted--within the 
context of the three-dimensional theory of gravity--as the gravitational field 
of a point mass, and can be traced back to Levi-Civita (1917). Today it is 
regarded as the limit of  space-times the source of which consists of a filament 
situated parallel to the z axis, or as a space-time with the corresponding 
distributional type of energy-momentum tensor. The singularity appearing 
in this space-time is a typical example of quasiregular singularities. The class 
of such singularities was extensively analyzed by Ellis and Schmidt (1977). 
Quasiregular singularities are of a topological nature and, although they 
cannot be removed by simply extending the space-time, the components 
of the curvature tensor behave perfectly well when propagating along 
curves terminating at the singularity. In our case, the space-time is flat 
(Minkowskian) and it looks as if the whole curvature were concentrated in 
the singularity (which is also called the conic singularity). 

To find the background d-space of  this space-time let us consider a 
four-dimensional hypersurface immersed in ~5, 

c ~4) = {pc  ~5: [ (z l )2  + (z2)2] , /2  = a-'?} 

where p =  (z ~ z ~, z 2, z 3, z4), a ~ .  The set of singular points of this hyper- 
surface has the form 

S =  { p s ~ 5  : p = ( z ~  O, O, z 3, 0), z ~ z3 ~ [~} 

It can be easily seen that metric (2.1) on C ~ 4 ) - S  is induced by the 
metric q<5)=diag(- l ,  1, 1, 1, 1) on ~5. Since the conic singularity is given 
explicitly, there is no need of any special definition. 

The manifold C (4) - S can be described as a finitely generated d-space. 
Let P := ~2 • (0, ~ )  • (0, 2Jr) be a "parameter space," and let us param- 
etrize the hypersurface C (4) with the help of the functions f r i : / ~  0~, i=0 ,  
1 , . . . , 4 :  

fro(q) := z ~ = t 

frl(q) := zJ = P  cos ~b 

fr2(q) := z2=P sin ~b (2.2) 

fr3(q) := z 3= z 

fr4(q) := z 4 = a p  
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for q=(t, z, p, qb)r where 

r=p(a2+l) ' /2 ,  O=$(aZ+l) -1/2 

Let ~ be the differential structure on/3 generated by {00, 0~ . . . . .  04}, 
i.e., , # = G e n { f o ,  0~ . . . .  ,04}. It turn out that the d-space (/3, ~ )  is not 
Hausdorff; indeed, the functions 0i, i=0 ,  1 . . . . .  4, do not distinguish the 
points (t, z, p, 0) and (t, z, p, 2Jr). To cure this situation, let us define the 
so-called Hausdorff equivalence relation PH in the following way: for any 
qJ,q2~P, q~Pnq2 if and only if O~(ql)=ai(q2), i=0 ,  1 . . . . .  4. Now, let 
,~ := Gen{a0, a l . . . . .  a4} be the differential structure on P := P/PH (Sasin, 
1988). ,~ is finitely generated by the family of  functions {a0, a~ . . . . .  04} 
given by ai([p]) := 0;(p),  forp~P, [p]~P, i=0 ,  1 . . . . .  4, and is sometimes 
denoted by ~/PH ; one has ~ = .~/PH. 

Now~ we can formulate our final result in the following form. 

Proposition 2.1. The d-space (P, ~ )  is diffeomorphic to the d-space 
(C (4~ - S, (gs)c~4~_s), which is a differential subspace of  ([~5, gs), i.e., (P, ,~) 
is diffeomorphic to the background manifold of a cosmic string. 

Proof The mapping F : P ~ N  5, F : = ( a o ,  a~ . . . .  ,a4),  is a diffeo- 
morphism of (P, ~ )  onto the image (F(P), (g5)F(P)). By direct computation 
one can see that F(P) = C (4)- S. It follows that 

F ( P, ~)  ~ ( C(4~- S, ( ,~5)c,4,_ s) 

is the diffeomorphism onto the d-subspace of  (~5, gs) (see Section 1). II 

Space-times with quasiregular singularities were investigated by Vickers 
(1985, 1987, 1990) with the help of  traditional, although sophisticated and 
rather tedious, methods. Among other results, he was able to show that only 
directions normal to the quasiregular singularity are degenerate, whereas 
those tangent to the singularity are well behaved (Vickers, 1990). It is inter- 
esting to note that such nondegenerate directions (or vector fields) which go 
smoothly through the singularity can be easily constructed by using the d- 
space formalism. For instance, the vector fields V, W: ~ ~ . ~  given by the 
conditions W(ai )=&0 and V(a~)=fi~3, i=0 ,  1 , . . . ,  4, are smooth in spite 
of  the fact that at the singularity the dimension jumps from 4 to 5 (Gruszczak 
et al., 1991). 

Example 2.2. Differential Space of the Closed Friedman Universe 

As our second example we shall consider the closed Friedman universe 
filled with radiation. Its metric has the form 

ds2=a2(rl)(-drl2+dz 2+sin2 Z ( d02+ sin2 0 d~b2)) (2.3) 
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where a(q)=a~ sin r/, 77, Z, 0~(0, Jr), (be(0, 2re), and at is a constant. Let 

P :=  {p :p= (rt, z,  0, ~b) ~(0, ~) • (0, ~r~ • (0, ~ • (0, 2~}} 

be a "parameter space." An isometric embedding of  the model in (~5, r/(5)) 
is given by 

i= 1, 2 . . . . .  5, (z0, zt . . . . .  z 4 ) ~  (5), p e p  zi: P ~  ~, 

where 

zo=alrl =: ao(p) 

zt =at  sin r/cos Z = : ~ t ( p )  

z2=at sin r/sin Z cos 0 =: a'2(P) (2.4) 

z3=al sin 1/sin Z sin 0 cos 4~ =: as(P) 

z4=at sin r/sin Z sin 0 sin ~b =: a4(p) 

The d-space ( P , ~ ) ,  ~ = G e n { a o ,  c/1 . . . . .  c/4}, is not Hausdorff; 
indeed, ffi(q, Z, 0, 0 )=f f i (q ,  Z, 0, 2re), i=0 ,  1 , . . .  ,4. 

As in the previous example, we introduce P : =  P/pn and ~ - -  
Gen{ao, al . . . .  , a4}, a i ( [p ] ) :=  ~i(P), for peP, [p]eP. Again we can for- 
mulate the following result. 

Proposition 2.2. (P, ~) is diffeomorphic to the background manifold of 
the closed Friedman world model with radiation. 

Proof The proof is similar to that of Proposition 2.1. �9 

As shown by Clarke (1970), every Lorentz manifold can be isometrically 
embedded in ~n with n sufficiently large. Therefore, the above procedure 
of  constructing d-spaces diffeomorphic to a given space-time background 
manifold can be repeated, in principle, for every space-time. As we have 
seen, the method is global from the very beginning. Moreover, the case of 
the cosmic string suggests that at least some singularities could be analyzed 
by using the theory of d-spaces. This poses the question: can differential 
structure be prolonged from the background manifold of  a given space-time 
to its singular boundary? We shall deal with this problem in the following 
sections. 

3. M E T H O D O L O G Y  OF THE CLASSICAL 
SINGULARITY P R O B L E M  

The physical observer perceives reality as a system of objects entangled 
in a net of manifold relations some of  which form the space-time arena. It 
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seems, therefore, that a good definition of a singular boundary of space- 
time--if it is to be given from the observer's perspective--should be formula- 
ted in terms of relations and objects determined from the inside of space- 
time. Taking into account this strategy, the following methodology has been 
elaborated when dealing with the problem of singularities in general relativity 
(Hawking and Ellis, 1973; Tipler et al., 1980): 

1. One defines a singular boundary ~M of space-time M as a set, for 
the time being devoid of any structure, of (usually timelike) incom- 
plete curves (geodesic-incomplete, bounded acceleration incomplete, 
or b-incomplete); the incompleteness of curves is treated as a 
symptom of the existence of singularities. 

2. An equivalence relation p c ~'M x c~M is defined which divides ~M 
into the classes of curves [?'], 7E~M, each class defining the same 
"ideal" point, i.e., a point of the singular boundary OM of space- 
time M; ~?M = ~M/p.  

Various definitions of ~?M (treated as a set) differ in the choice of ~'M 
or in the choice of p. In order to make the construction interesting from the 
physical point of view, one must introduce an additional structure on 
M u OM, namely a topological structure. Without a suitable toplogy, OM 
has no "contact" with the space-time M. There is, however, a general 
requirement concerning topology on M w 0M. It must be such that 

M is dense in M w OM (3.1) 

This assumption ensures that every point of ~M is attainable from the 
inside of space-time. 

During the last 15 years, much work has focused on the problem of a 
suitable topology on M w 0M. The problem has turned out to be difficult; 
even the physically promising and mathematically elegant construction pro- 
posed by Schmidt (1971) led to physically nonacceptable non-Hausdorff 
topologies (Bosshard, 1976; Johnson, 1977). In such a situation even partial 
solutions are valuable. Such partial solutions (valid for restricted classes of 
space-times) are, for instance, those proposed by Clarke (1978), Dodson 
(1978, 1979), and the present authors (Gruszczak, 1990; Gruszczak et al. 
1991). 

In the present paper we propose an enrichment, and the next logical 
step, of the above-discussed strategy. A structure richer than topology is 
differential structure; we shall discuss how to prolong the differential struc- 
ture from the background d-space of a given space-time to its singular 
boundary so that the space-time with singularities can be organized into a 
d-space, and the methods of the d-space theory can be used to investigate 
the singularity problem. Since any differential structure ~ determines the 
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topology r~, the prolongation must be done in such a way that the correct 
topology on M u 0M is preserved. 

The question arises whether every space time with its singular boundary 
can be organized into a d-space. It turns out that the answer to this question 
is either positive or negative depending on the way one defines the singular 
boundary in question. 

Example 3.1. Closed Friedman Worm Model with b-Boundary 

It has been shown by Johnson (1977, Theorem 2) that if 0b is the part 
of the b-boundary of M which is defined by b-incomplete curves along which 
the usual radial coordinate r is not bounded away from zero (in such a case, 
0b is called the essential boundary of M), then 0h consists of one point x0 
and the only neighborhood of x0 in M is M itself. On the other hand, it is 
known from the theory of d-spaces (see Appendix A) that, for any d-space 
(M, cg), the topological space (M, re)  is always %regular, and if it is To, 
then it must be Tj/3. Let (/Q, v) be a topological space such that ;Q= 
M w  {x0}; xor and M is a differentiable manifold. Let us assume that c~ 
is a differential structure on ~t  such that r~g= v. Evidently, TelM is a T0- 
topology. However, the only neighborhood of Xo in M is M itself, which 
implies that for every f ~  ~ and for every x ~ M, f (x )  = f  (Xo). Therefore, ~ = 
{k: k ~ }  and consequently v~[M is not To. It follows that there is no 
differential structure ~ on A~t such that r = T~. 

From the above it follows that there is no differential structure ~ on 
the b-completion of the closed Friedman space-time M; the reason for this 
is the inconsistency of topologies. In other words, the closed Friedman space- 
time with its b-boundary is not a d-space, and it cannot be embedded in any 
smooth manifold of no matter how many dimensions (Heller et al., 1992). 

If one tries to cure the situation by introducing a suitable equivalence 
relation [which is a standard method in such cases (Sasin, 1988)], it turns 
out that all points of M must be glued together to obtain a Hausdorff space. 

The same situation occurs in the Schwarzschild solution with its singu- 
larity regarded as a b-boundary (Johnson, 1977). 

We can see that the reason for the nonexistence of a differential structure 
on a space-time with its singular boundary is the "noncompatibility of topol- 
ogies," and this should be regarded as a symptom of the fact that the 
corresponding singular boundary has been defined in an unsuitable manner 
(there is a general consensus that this is indeed the case as far as the b- 
boundary is concerned). If  there is no "noncompatibility of topologies," the 
differential structure can be prolonged from the background d-space of 
space-time onto its singular boundary. We discuss this in the next section. 
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4. PROLONGATION OF DIFFERENTIAL STRUCTURES 
TO SINGULARITIES 

Let (M, ~ )  be the background d-space of a space-time M (i.e., a mani- 
fold) and c~N its singular boundary [in the following, unless directly specified, 
we shall have in mind any singular boundary satisfying condition (3.1)]. 

Definition 4.1. A d-space (N, cg) is said to be a prolonged d-space of a 
given background d-space of space-time (M, ~) to its singular boundary ON 
(prolonged d-space for short) if there exists a d-space (N, c~) diffeomorphic 
to (M, cg) such that: 

(a) /V = ON w N, where N is dense in P). 
(b) (U, ~N) = (N, ~). 

c~ is said to be a prolonged differential structure of the differential structure 
~. We shall also speak of a prolongation of the differential structure (to the 
singular boundary). 

Such a prolongation, if exists (see the previous section) need not be 
unique. 

Example 4. t 

Let ([~, gl), gl = C~ be a (one-dimensional) Euclidean d-space. 
Let further (~0, ~0) be a d-space such that 0~o = ~ -  {0} and %=Gen{a0},  
where ct0=id~0. Of course, (0~, gl) is a prolonged d-space of (~0, ~0) to the 
singular boundary {0} [{0} is the so-called regular singularity in the termin- 
ology of Ellis and Schmidt (1977)]. This prolongation is natural in the 
sense that it restores the original Euclidean differential structure ,~1 lost by 
removing a point from ~. Indeed, one has ~ =  ~o u {0} and g~ =Gen{a}. 
where a = ida. 

However, the differential structure on ~0 can be prolonged in a 
different way. 

Example 4.2 

Let ~2 = { f : f :  ~ ~ are functions such t h a t f  [~0E~o}. (~, ~,~) is an 
infinitely generated d-space, cg2#$~, since to cg2 belong (besides smooth 
functions from g~) nonsmooth (in the usual sense) functions, e.g., the func- 
tion [xr. (~, cg2) is also a prolongation of ([~o, ~o). Let us note that the d- 
space (~, ~2), being infinitely generated, cannot be embedded in any ~" for 
any finite n (Sasin and Zekanowski, 1987). 
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5. CAUCHY SINGULAR BOUNDARIES OF SPACE-TIME 

Every Lorentz manifold (M, g) is a metrizable but not metric space. 
The point is that no Lorentz manifold has a uniquely defined uniform struc- 
ture. This fact implies the existence of many nonequivalent Cauchy comple- 
tions, and lies at the basis of various troubles connected with attaching a 
"reasonable" singular boundary to space-time. One way out of the problem 
would be to distinguish, possibly on physical grounds, a single uniform 
structure with the corresponding Cauchy completion as a candidate to rep- 
resent space-time together with its "reasonable" singular boundary, which, 
in this case, could rightly be called a Cauchy singular boundary of space- 
time. The problem was extensively discussed by Gruszczak (1990). 

In previous work (Gruszczak et al., 1991) we proposed a criterion natu- 
rally distinguishing a single uniform structure for a restricted class of space- 
times, and thereby correctly defining their Cauchy singular boundaries. It 
turns out that, for a time-orientable space-time (M, g) with the Levi-Civita 
connection reducible to an 0(3) structure, one can naturally select a nonvan- 
ishing timelike vector field ~ on M and a Riemann (positively defined) metric 

+ 
g on M. We showed that in such a case the Cauchy boundary of the metric 
space (M, g+) consists of "endpoints" of b-incomplete curves in (M, g), and 
consequently it should be regarded as the Cauchy singular boundary of space- 
time (M, g). For space-times belonging to this class, the problem of differen- 
tial structure prolongation from the interior of space-time to its Cauchy 
singular boundary has been sol'~ed. We shall also discuss, as one of our main 
examples, the closed Friedman world model, the connection of which is not 
reducible to 0(3)structure. Therefore, its Cauchy boundary [in a detailed 
way described by Gruszczak (1990)] has no obvious physical interpretation 
except for the fact that it remains in agreement with our expectations. For 
this reason, we shall treat the closed Friedman model as a test of our method 
rather than a physically well-founded example. It will fulfill for us an impor- 
tant function of showing that if we define the singular boundary as a Cauchy 
boundary, independently of whether the singularity is a curvature singularity 
or not, our procedure of differential structure prolongation works well. 

In the next section we present the construction of the Cauchy comple- 
tion of metric d-spaces. 

6. CAUCHY COMPLETION OF METRIC d-SPACES 

In the present section we define metric d-spaces in general and construct 
their Cauchy boundaries in such a way that the differential structure on the 
Cauchy completion of the metric d-space will turn out to be the prolongation 
of the corresponding differential structure of the considered metric d-space. 
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Definition 6.1. The triple (M, cg, d) will be called a metric d-space if: 

(a) d: M x M--* N~ is a distance function (in the usual sense) 
(b) r . =  rd, i,e., the topology r .  is equivalent to the metric 

topology rd. 
(c) (M, cd) is a d-space. 

Any (M, cd, d) will be called an incomplete metric d-space if (M, d) is 
incomplete as a metric space. Otherwise, (M, cd, d) will be called a complete 
metric d-space. It is well known that every incomplete metric space (M, d) 
can be completed. The question is whether this remains true for incomplete 
metric d-spaces. 

In order to establish the notation, let us briefly review the well-known 
completion procedure for metric spaces. In what follows the letter e always 
denotes a Cauchy sequence, c= {x., n~ N}. 

Let (M, d) be a metric space, and C and CM sets of Cauchy sequences 
of points from M defined in the following way: 

c : =  {c=M: c= {x.}, x~ 

CMcC, CM:= { c c M :  lira x, eM} 

Let s denote the distance function introduced in C or CM in the usual 
manner, i.e., 

d ( c  1 , C 2) := lim d(xl,, x~), c ~, c2e C or CM 

Two Cauchy sequences c ~, c2eC are equivalent (c j p c 2) if and only if 
3(c', c 2) =0. 

Let us consider two metric spaces (C,d) and (CM, d), where 
C:= C/p, (TM:= CM/p, and d([cl], [c2])=~t(c ~, c2), and the symbol [.] 
denotes the equivalence class with respect to the relation p. 

One has (by construction): 

(a) (C, d) is (by definition) a Cauchy completion of (M, d). 
(b) (CM, d) is isometric to (M, d). 
(c) (CM, d) is dense in (C, d). 

The set ~tM := C -  CM will be called the Cauchy boundary of the metric 
d-space. 

Let (M, cd, d) be a metric d-space, CM the set of Cauchy sequences as 
above, and i: M-o CM, given by i(p)= [c]p, the isometry mentioned in (b), 
where [@ is the class of all Cauchy sequences {x.} c M such that x. ~p~M.  
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Moreover, let us introduce the set ~ defined in the following way: 

c~= {tT: CM ~ ~: ~= aoi -~, cte~} 

Proposition 6.1. The triple (CM, ~, d) is a metric d-space. 

Proof (1) Since i is a homeomorphism of the topological spaces 
(M, r~,) and (CM, ~ )  and it is an isometry of the metric spaces (M, d) and 
(CM, d), therefore the topologies va and ~r on CM are equivalent. 

(2) It is easy to show that ~ is a d-structure on CM. �9 

Proposition 6.2. (CM, cg) is diffeomorphic to (M, ~).  

Proof It is easy to check that i: M--* CM is a diffeomorphism of 
(CM, cg) onto (M, cg) (see definition in Section 1). �9 

Now let us come back to our discussion of metric d-spaces. 

Definition 6.2. Every metric d-space (C, cg, d) which satisfies the condi- 
tions (a) (C, d) is a Cauchy completion of (M, d) and (b) the d-subspace 
(CM, c~e-~) of the d-space (C, cg) is diffeomorphic to (M, cg), is said to be 
a Cauchy completion of the metric d-space (M, cg, d). 

Proposition 6.3. The d-space (CM, cg) is the prolonged d-space of 
(M, ~e). 

Lemma 6.1. Let (N, 9 )  and (N, 9 )  be d-spaces such that: 

(a) N is dense in N. 
(b) @ = Gen g0, ~ = Gen ~o, where 

~o= {a: a: 77~ ~} and ~ o = { a : a : N ~ R }  

(c) ~0={~:  for every a e ~ 0  there is aeN0 such that a = a [ N } .  

Then (N, ~ U ) =  (N, N). 

Proof The conclusion is a straightforward consequence of the d- 
subspace definition (see Section 1). �9 

Having Definition 6.2, we should learn how to construct the Cauchy 
completion of a metric d-space (M, (g, d). 

Construction 6.1. Let (M, cg, d) be a finitely generated metric d-space, 
i.e., Cg=Gen{al , . . . ,a , ,0 ,  n0eN} and (C,d) a Cauchy completion of 
(M, d). Let us further assume that the following conditions are satisfied, for 
every [c]~?M, c k= {x~" ne N} e[c], k=  1, 2, and ai (for any i= 1, 2 , . . . ,  no)" 

(a) there exist lim ai(x~) and lira ai(x2,) 
(b) lira ai(x~)=lim ai(x]). 
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We define the differential structure c~ in the following way: 

:= Gen{al,  ~72, . . . , c~,0} 

where ai: C ~  [R and ai([c]) := lim ai(x,). 

Proposition 6.4. The triple (C, cg, d) is a Cauchy completion of 
(M, cg, d) and thus (C, ~) is a prolonged d-space of (M, ~) .  

Proof The result is a consequence of Lemma 6.1 and Proposition 
6.3. [] 

As was pointed out in the Introduction, every family of real functions 
cg0 can be supplemented so as to form a differential structure cg = Gen cg0. 
We have used this fact in the above construction. Nothing prevents us from 
adding new functions to (g0 to obtain another prolongation of the differential 
structure of the space-time d-space. However, one should remember that not 
every function, when added to cg0, changes the corresponding differ- 
ential structure, i.e., it can happen that GenCg0=GenCg~, where 
~d=c-g0 w {f:  M ~  ~}. The condition Gen cg0#Gen ~ is satisfied if the 
function f does not differentially depend on all functions of % at least at 
one point p e M  (see Appendix B). In the following we shall change the set 
of generators ~o of Construction 6.1 by adding to Z0 new functions so as 
to obtain a set of new generators differentially independent at least at one 
point of OM. In this way we can obtain various nontrivial prolongations of 
a given differential structure to the singular boundary of space-time. 

Construction 6.2. Let 

~o := {a~, a 2 , . . . ,  a,o} 

and 

~0 = {J',, d2,.  � 9  ~,,0} 

be the sets of generators as in Construction 6.1, and let B= {13:/3: M--, R} 
be a family of real functions satisfying the following conditions: 

1. For every [c]eOM, c ~, c2z[c], and/3eB,  
(a) there exist limits lira/3(xl,), lim/3(x~) 
(b) lira/3(x~n) = lim/3(x 2) 

2. Every/3eB is a smooth function, e . g . , / 3 e ~ = G e n  ~0. 

Moreover, let us define the set ~0:= {/3:/3: C--+[R} such that fl([c]) : = 
lira/3(x,) and for every /3oeB, /3o is differentially independent of every 
function belonging to ~o u / ? -{ f l0}  at least at one point [c]e~M. 
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We define the following differential structure: 

~l =Gen(@ouB) 

Proposition 6.5. The triple (C, cgl, d) is a Cauchy completion of 
(M, ~, d) and consequently (C, cg) is a prolonged d-space of (M, cg). 

Proof The proof is analogous to that of Proposition 6.4. �9 

Both our constructions start with finitely generated d-spaces since we 
are interested in prolonging differential structures from space-time manifolds 
(which are finitely generated d-spaces) to their singular boundaries. How- 
ever, the general idea of prolongations remains valid for a larger class of 
metric d-spaces. 

7. PROLONGATIONS OF DIFFERENTIAL STRUCTURES TO 
QUASIREGULAR AND CURVATURE SINGULARITIES 

In the present section we continue to study two special, but important, 
instances, the cosmic string and the closed Friedman world model. Our aim 
is to construct prolongations of the differential structures of their back- 
ground d-spaces to their singular boundaries, the first of which consists of 
quasiregular singularities and the second of curvature singularities. 

Example 7.1 

Let P0 := JR2 x (0, oe) x (0, 2re). The background manifold of a cosmic 
string with singularity defined as a Cauchy boundary is topologically equiva- 
lent to/5 := Po/PH (Gruszczak et al., 1991). Let us introduce a differential 
structure on/5 with the help of our Construction 6.1. 

The set of functions .r := Gen{c~o, 6j . . . .  , ~4} is a differential struc- 
ture, and 

Ia,([po]), [p0]~P (7.1) 
a,([p0]) := lrp]in~m aj([p]),  [p]~P, [po]eSP 

where ai: P ~  ~, i=0, 1 . . . . .  4, are defined in Example 2.1. The limit in the 
above formula exists because ~i does not depend on ~ at p--0. 

On the strength of Proposition 6.4, (P, ~ )  is a prolonged d-space of 
(P,.~). Indeed, P is a Cauchy completion of the corresponding metric 
d-space (Gruszczak et al., 1991), and .~p=~@. 
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Example 7.2 

Let us again consider the background manifold of a cosmic string with 
singularity and Construction 6.2. Let f l ~ , . . . ,  f l , , , . . ,  be functions on /3 
defined by 

tTk(t, ~, ; ,  ~ ) : :  ({(z')2+ (z2) 2} ,/2),,,~,,3: #,,~,,, 
where mk is the k-th prime number greater than 3, and let/3/~: P ~ [~, k = 
t, 2 . . . . .  n . . . . .  be the set of real functions defined in the following way: 

flk([P]) := /~(P) ,  peP0,  [p]eP 
The prolonged functions ilk: P --* ~ can be obtained from formula (7.1) 

by making replacements a ~ fl and i ~ k. 
One can check (Proposition B2) that every /3k is d-independent of the 

remaining/~k,, kCk', and ~'i at [p]eSP. Thus, the d-space (P, ~ ) ,  where 

21 = G e n ( 8 0 , . . .  , 84, ill,  .. �9 , f i n , . . . )  

is infinitely generated and, consequently, can be embedded in no ~" for any 
n (Sasin and Zekanowski, 1987). 

Example 7.3 

Let us consider a prolonged d-space of the background space-time of 
the closed Friedman world model. We have 

fi0 := {P:P=(rl, Z, 0, q~)~(0, Jr) x (0, n} x (0, :r} x (0, 2zr}} 

For this model the background manifold with the Cauchy boundary 
is topologically equivalent to/3 := Po/PH. As above, 

.~ := Gen{~0, al . . . . .  a4} 

where ~ are defined by the formula (7.1), but P, .~, and a~ have meanings 
as in Example 2.2. 

(P, o~) is a Canchy completion of (P, ,~). Indeed,/3 is a Cauchy comple- 
tion of the corresponding metric space (Gruszczak, 1990) and ~p = ~ .  

Example 7.4 

Let us again consider the closed radiation-filled Friedman world model. 
Let the real-valued functions f l~ , . . .  , ft, . . . .  and fll . . . . .  /3 . . . . . .  be defined 
by 

L(r] ,  Z, 0, ~b) : : ({(a , )e+ (a2)2+ (a3)2 + (a4) 2) '/2),,,k/3 

= al sin ''~/3 q, mk is as above, kE 

flk([pl)=L(p), p~Po, [p]6P, P=(rl, z.O,~b) 
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As in Example 7.2, we define the prolonged differential structure as ~ = 
Gen(a0, c~1 . . . . .  c~4, fit . . . . .  f t , , . . . ) .  In this way we obtain the d-space 
(P, ~ )  representing the closed Friedman space-time with singularities which 
cannot be embedded in any En. 

Intuitively, we would possibly feel that the Cauchy completion of the 
Friedman closed space-time of Example 7.3 is "more natural" than that of 
Example 7.4; however, so far neither mathematical nor physical reasons are 
known which would allow us to distinguish any of them. Perhaps this fact 
tells us something about the malicious character of the Friedman singularity. 

8. CLASSIFICATION OF DIFFERENTIAL 
STRUCTURE PROLONGATIONS 

The above analyses enable us to give a simple classification of differen- 
tial structure prolongations to the singular boundary. Although the prolon- 
gation procedure is not unique, it would be interesting to know which 
differential structures can be prolonged to a given singular boundary. Classi- 
fication of such prolongations would shed light on the nature of the singular- 
ities [we adapt to our purposes the classification given by Sasin (1991)]. 

Let (M, ~ )  be a space-time background d-space (in fact, the manifold) 
and •M its singular boundary. First, we formulate two classification criteria. 

Criterion 8.1 (Regularity criterion). A singular boundary point p ~ OM 
is called regular if there exists a neighborhood V~ r~: of p such that the d- 
space (V, ~ v )  has a constant differential dimension n. A boundary point 
p~OM is called singular i fp  is not regular. 3 

The above definition of regular boundary points is a d-space counter- 
part of the usual definition of regular singularities. Or, to be more precise, 
in the traditional classification a singular boundary point is said to be regular 
if there is an isometric extension of the considered space-time M into a larger 
space-time M' such that the Riemann tensor of M is defined and the singular 
boundary point is an interior point in M' (Ellis and Schmidt, 1977), whereas 
in our case only differential structure is taken into account (every regular 
singularity in the traditional sense is regular in our sense). Regular singularit- 
ies were studied with the help of d-space methods in Heller and Sasin (1991). 
From the point of view of the d-space theory, regular singularities corre- 
spond to d-spaces of class Do with constant differential dimension. 

Criterion 8.2 (Local embedding criterion). A boundary point p c~M is 
said to be of class Do (D0-point, for short) if there exists a neighborhood 

3All boundaries considered in this section are singular boundaries. To avoid cumbersome 
formulations like "singular singular boundary point," we shall simply speak of boundary 
points. 
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Ve'cg o f p  such that (V, ~v)  is a d-space of class Do. A boundary point 
psOM is said to be a non Do-point if it is not of class Do. 

Differential spaces of class Do constitute an important and easy to 
handle class of objects. Any Hausdorffd-sp.ace which is locally finitely gener- 
ated is a d-space of class Do (Sasin and Zekanowski, 1987), and for a d- 
space of class Do it can be shown (Kowalczyk, 1987) that if OM is a set of 
its singular points, then the set M of its nonsingular points must be open 
and dense in •M w M. 

An immediate outcome of the above definitions is a simple classification 
scheme of the singular boundary points (or of differential structure prolonga- 
tions which lead to these boundary points). A regular boundary point can 
be either Do or non-Do, and similarly a singular boundary point can be 
either Do or non-D0. In consequence, we have the following diagram: 

r 
Do-regular 

singular boundary point 
I 

regular singular 
I I 

t I 1 
non-Do-regular Do-singular  non-Do-singular 

This diagram deserves a closer analysis. Its upper part looks like the 
corresponding part of the traditional classification of singular boundary 
points (Ellis and Schmidt, 1977; Clarke and Schmidt, 1977), but notice that 
in our case possible prolongations of a given differential structure are taken 
into account and not the behavior of the curvature as one approaches the 
singularity. 

This is clearly illustrated by our examples. The d-space (N, d~ of 
Example 4.1 is a Do-regular prolongation of the d-space (N, ~0), whereas 
the d-space (N, ~2) of Example 4.2 is a non-D0-singular prolongation of 
(~, ~o). The fact that the same d-space has two different prolongations, 
one of which isregular and another singular, has important consequences. 
Regular boundary points are removable singularities: one can remove them 
by isometrically extending the considered space-time in the same way as 
is done with regular singularities of the traditional classification scheme. 
However, the singular boundary points are not removable; the differential 
dimension of such singular points differs from the differential dimension of 
nonsingular points of space-time, and this is an obstacle to any extension. 
The above examples show that by suitably prolonging the differential struc- 
ture of the space-time manifold (recall that this procedure is not unique) we 
can change the regular boundary point into a singular boundary point (by 
adding suitable functions to the differential structure--the function ]xl, in 
Example 4.2--we change the differential dimension of the singular point). 
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In connection with the above, three remarks should be made: First, an 
observer remaining in the interior of space-time is unable to decide whether 
the singularity he approaches is regular or singular; it depends on the prolon- 
gation of the differential structure to the singular boundary, but all such 
prolongations coincide (by definition) when localized to the space-time mani- 
fold. Second, in the case when we have changed a regular boundary point 
into a singular boundary point by choosing a suitable differential structure 
prolongation, we are entitled to say that the singularity resides in the differ- 
ential structure. Third, it cannot be excluded that the future theory of quan- 
tum scalar fields on space-time could make use of this "degree of freedom," 
created by the theory of differential spaces, to form a singularity from an 
otherwise regular point of space-time. There is no such possibility within the 
framework of the traditional approach. 

Let us consider the d-space of the cosmic string (P, ~)  of our series of 
examples. The generator a4 of its differential structure ~ (Example 2.1) is 
differentially dependent on the generators al and a2 for any point p~P; 
however, it becomes differentially independent of them if the generators are 
prolonged to / s_  p (Example 6.1). This shows that the quasiregular singular- 
ity differs from nonsingular points of space-time as far as their differential 
properties are concerned. Moreover, from Proposition B1 it follows that the 
local differential dimension of the quasiregular singularity increases by one 
as compared with nonsingular points of space-time. Therefore, it belongs to 
the singular boundary and is nonremovable. It is known that in the case of 
the cosmic string its quasiregular singularity resides in the topology, but it 
can be strengthened by manipulating the differential structure: the prolonga- 
tion discussed in Example 6.1 leads to a D0-singular boundary which is 
relatively innocuous, but the prolongation discussed in Example 6.2 leads to 
a non-D0-singular boundary which cannot be embedded into any finite- 
dimensional diffferentiable manifold. 

Similar remarks concern the curvature singularities of the closed Fried- 
man universe. Such singularities are nonremovable, but the "strength" of 
the singularity can be modified by suitably choosing the differential structure 
prolongation : the prolongation of Example 6.3 gives a D0-singular bound- 
ary, and that of Example 6.4 a non-D0-singular boundary which again can- 
not be embedded into any finite-dimensional differentiable manifold. 

Among our examples there is no d-space with a non-D0-regular bound- 
ary. An example of such a d-space has been constructed by Sasin (1991), 
but since it looks rather artificial and is not even a space-time, we shall not 
discuss it here. 

9. CONCLUDING REMARKS 

In the present work we have reached two main goals: First, we have 
proposed a global (from the very beginning) description of space-time in 
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terms of  differential spaces rather than in terms of  differentiable manifolds. 
Second, we have discussed prolongations of  the differential structure of 
a given space-time to its singular boundary. The first achievement is an 
improvement of  known global methods; the second one sheds new light on 
the complicated nature of singularities. As far as we know, this problem had 
never been investigated. 

Many attempts have focused on topological relations between space- 
time and its singular boundary;  we have demonstrated that, even in the cases 
of regular and quasiregular singularities, the differential space modeling a 
space-time with such singularities can have the nontrivial property of being 
nonembeddable in any 0~". 

It turns out that if there is no noncompatibility of topologies, the differ- 
ential structure can be prolonged to singularities. However, this procedure 
is not unique. For  the space-time of a cosmic string and of closed Friedman 
universes, we have constructed prolongations of  their differential structures 
to the singular boundaries. Some of these prolongations lead to differential 
spaces which can be embedded into (N", $n) for some n < o% and some to 
differential spaces which can be embedded in no such Euclidean differential 
space. 

This nonuniqueness of differential structure prolongations contributes 
to a better understanding of  the nature of singularities. Singularities can 
admit many nontrivial differential structures. One cannot exclude that a 
future theory, e.g., a theory of  quantum gravity or a theory of  quantum 
fields on a curved background space-time, would in some way distinguish 
one such admissible differential structure (it should be remembered that 
functions belonging to a differential structure can be interpreted as scalar 
fields on a differential space). The classification of admissible prolongations 
of  differential structures to singularities proposed in the present work could 
be regarded as a first small step in this direction. 

APPENDIX A. T O P O L O G Y  ON d-SPACES 

Let ~ be a family of continuous real functions on a topological space 
M. The space M is said to be Cr if for every open set U ~  M and for 
every p o i n t p e  U there exists a functionfcCg separatingp in U, i.e., a function 
which equals 1 on a neighborhood V o f p  and equals 0 on an open set V0 
which together with the set U forms the covering of  M. 

We shall show that any topological space (M, r~) is Cg-regular. Indeed, 
let U be an open set in M, and peU. There is a mapping f =  
(f~ . . . . .  f , ) :  M ~ ,  w h e r e f l , . . .  , f-~c~, and an open set P_~0~" such 
that p6f-~(P)~_ U. Here R n is g-regular, where g is the set of  all smooth 
functions on ~" [for details see Sikorski (1972)]. 
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Let us recall that a topological space (M, r~.e) is said to be To if for every 
pair of its disjoint points there is an open set containing only one of these 
points. A topological space (M, re) is said to be ~ (or Tichonov) if it is T) 
and if for any point peM and a closed set F =  M which does not contain p 
there exists a continuous function f s u c h  t h a t f ( p ) =  0 a n d f ( q ) =  1 for qzF. 
We say (M, Z )  is T~ if for every pair of its different points x, y eM there 
exists an open set U such that xe  U and y # U (Hausdorff topological space 
is called T2). 

Now we shall show that, for any d-space (M, cg), if (M, r~) is To, then 
it is T3'. Indeed, for any x, yeM, x#y,  there is a neighborhood Ut of x 
such that y~ U). Since (M, Z )  is P-regular, there i s f ~ Z  such that f - t (  2, 2) 
and f - l ( - 1 ,  ~) are disjoint neighborhoods of x and y, respectively. 

APPENDIX B. DIFFERENTIAL DIMENSION 

The theory of differential dimensions has been developed in Multarzyfi- 
ski and Sasin (1989) and Heller et al. (1991); here we only outline the basic 
concepts. In the following, the local differential dimension of a differential 
space (M, <g) is understood as a dimension of the tangent space TpM to 
(M, Z) at peM. However, one should notice that in the case of a d-space 
its differential dimension can change from point to point, and it can be 
different from its topological dimension. To make this precise, we introduce 
the following concepts. 

Definition B1. A function f e z  is said to be differentially dependent 
(briefly, d-dependent) on functions g) . . . .  , g, e Z  at a point pEM if there 
exist a neighborhood Ue re of the point p and a function c0eg, such that 

f lv--~oo(g, , . . . ,g , ) lc ,  

Definition B2. A set {fl . . . . .  f ,} c ~  is said to be differentially indepen- 
dent (d-independent) at a point p~M if no function f ,  for ie{1, 2 , . . . ,  n}, 
differentially depends on the remaining functions atp.  Any set . ~ - c Z  is said 
to be differentially independent at p~ M if every subset of ~- is d-independent 
atp.  A set ~ - c Z  is said to be d-dependent a tpsM i f Y  is not d-independent 
at p. 

Both d-dependence and d-independence of a set ,~- are local properties 
of this set. 

It is easy to see that the set {~rl . . . .  , re,} c ,g ,  of projections into coordi- 
nate axes is d-independent at any point pe~" .  It can also be shown that 
if M c R "  is a k-dimensional hypersurface, then the set of projections 
{Irl]M,.. �9 ZC,,l,vt} C C~176 is d-independent at an arbitrary point p~M if 
and only if k=n. From this it follows that if M c  R" is a non-empty subset 
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and cg= g,M,  then the set o f  the projections {Jr~lM,. . . ,  ](hiM} is d-indepen- 
dent at p e M  if and only if dim T p M = n .  

Proposition B1. Let (M, cg) be a d-space with ~g= G e n { j ]  . . . .  , f ,} .  The 
set o f  functions {j] . . . . .  f ,}  c ~  is d- independent  at p e M  if and only if 
dim T p M = n .  

Another  useful characterizat ion o f  the d-independence o f  a set o f  real 
functions belonging to ~f is given by the following. 

Proposition B2. Let (M, cg) be a d-space. A subset {j] . . . . .  f ,}  of~g is 
d- independent  at a point  p s M  if and only if, for  any function c o e g ,  and 
any ne ighborhood  UE r~ o f  the point  p,  the following implication is true: 

coo(J] . . . . .  f ~ ) l u = O  ~ Vl<_i<_n, [o ' ] i (J ] (p)  . . . . .  f ~ ( p ) ) = O  

From Proposi t ion B1 one has the following result: 

Corollary B1. I f  tangent  vectors v~ . . . . .  v,,e T p M  are linearly indepen- 
dent, then any set o f  functions {j] . . . . .  f ,} c~g such that 

v ~ ( f ) =  5 u for i , j = l , 2 , . . . , n  (*) 

is d- independent  a tp .  
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